ON GEOMETRIC AND TOPOLOGICAL PROPERTIES OF THE CLASSES OF HEREDITARILY $\ell_{p}$ BANACH SPACES
نویسندگان
چکیده
منابع مشابه
A Class of Hereditarily $ell_p(c_0)$ Banach spaces
We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولthe impact of attending efl classes on the level of depression of iranian female learners and their attributional complexity
می توان گفت واقعیت چند لایه ا ی کلاس های زبان انگلیسی بسیار حائز اهمیت است، زیرا عواطف و بینش های زبان آموزان تحت تاثیر قرار می گیرد. در پژوهش پیش رو، گفته می شود که دبیران با در پیش گرفتن رویکرد فرا-انسانگرایی ، قادرند در زندگی دانش آموزانشان نقش مهمی را ایفا سازند. بر اساس گفته ی ویلیامز و بردن (2000)، برای کرل راجرز، یکی از بنیان گذاران رویکرد انسانگرایی ، یادگیری بر مبنای تجربه، نوعی از یاد...
Hereditarily Homogeneous Generalized Topological Spaces
In this paper we study hereditarily homogeneous generalized topological spaces. Various properties of hereditarily homogeneous generalized topological spaces are discussed. We prove that a generalized topological space is hereditarily homogeneous if and only if every transposition of $X$ is a $mu$-homeomorphism on $X$.
متن کاملInterpolating Hereditarily Indecomposable Banach Spaces
A Banach space X is said to be Hereditarily Indecomposable (H.I.) if for any pair of closed subspaces Y , Z of X with Y ∩ Z = {0}, Y + Z is not a closed subspace. (Throughout this section by the term “subspace” we mean a closed infinite-dimensional subspace of X .) The H.I. spaces form a new and, as we believe, fundamental class of Banach spaces. The celebrated example of a Banach space with no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2006
ISSN: 1027-5487
DOI: 10.11650/twjm/1500403857